MODEL NO. :
 IE-G-1819CH05MP-CB-1

 ISSUED DATE:
 2020-03-04

 VERSION :
 Ver 1.0

□ Preliminary Specification

■ Final Product Specification

CUSTOMER:

Approved by	Notes

REVISION RECORD

Rev. NO.	Rev. Date	Description	Remarks
1.0	2020-03-04	First Release	

TABLE OF CONTENT

1.	GENERAL SPECIFICATIONS	.P3
2.	ABSOLUTE MAXIMUM RATING	P4
3.	ELECTRICAL CHARACTERISTICS	.P4
4.	BACKLIGHT CHARACTERISTICS	P8
5.	DIMENSIONAL DRAWING	P9
6.	INTERFACE PIN CONECTIONS	.P10
7.	BLOCK DIAGRAM OF LCM	.P11
8.	OPTICAL CHARACTERISTICS	P12
9.	TOUCH PANEL SPECIFICATION	.P15
10.	INSPECTION CRITERION	.P16
11.	RELIABILITY AND INSPECTION STANDARD	P20
12.	PRECAUTIONS FOR USING LCD MODULE	P21

1. General Specifications

IE-G-1819CH05MP-CB-1 is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver IC, FPC, and a back light unit. The module display area contains 1024x 600 pixels. This product accords with RoHS environmental criterion.

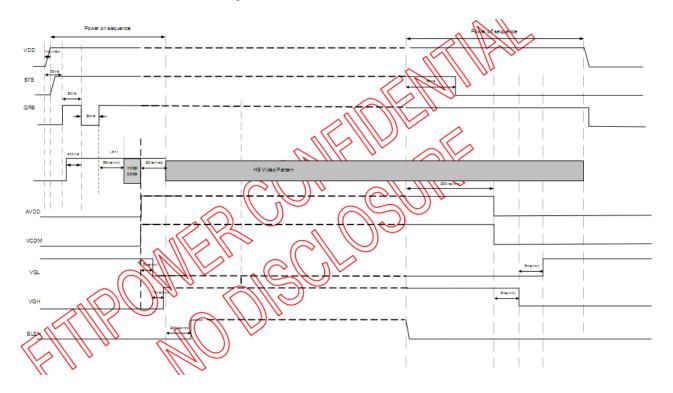
Item	Display Panel	Remark
Size	7.0 inch	/
Display Mode	Normally Black, Transmissive LCD	/
Viewing Direction	Free View	/
Module area(W x H x T)	180.0 x 109.0 x 5.3	mm
TFT area(W x H x T)	164.9 x 100.0 x 3.5	mm
Active Area(W x H)	154.2144 x 85.92	mm
Number of Dots	1024RGB x 600	/
Pixel Pitch(W x H)	0.1506 x 0.1432	mm
Surface treatment	Anti-Glare	/
Interface Type	4 Lanes MIPI	/
Backlight Type	27 LED(3 Serial*9)	/
Driver IC	EK79007AD2+EK73217BCGA	
Weight	TBD	/

2. ABSOLUTE MAXIMUM RATINGS

ITEM	Symbol	Min	Max	Uint	Note
Digital Supply Voltage	VDD	-0.3	2.0	V	
Analog Supply Voltage	AVDD	-0.5	15.0	V	
Gate On Voltage	VGH	-0.3	40.0	V	
Gate Off Voltage	VGL	-20	0.3	V	
Gate On - Gate Off Voltage	VDDG-VEEG	-	40	V	
Operation Temperature	Тор	-10	60	$^{\circ}$	Note 1
Storage Temperature	TSgt	-20	70	$^{\circ}$	Note 1

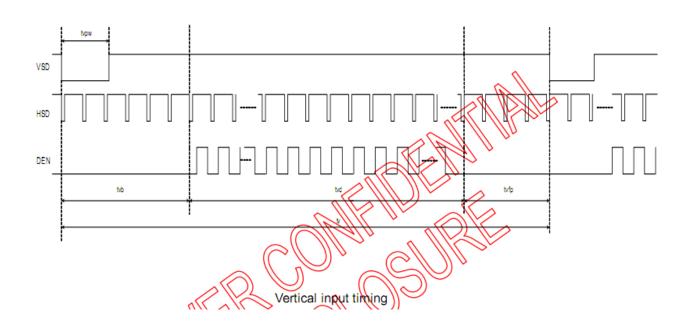
3. ELECTRICAL CHARACTERISTICS

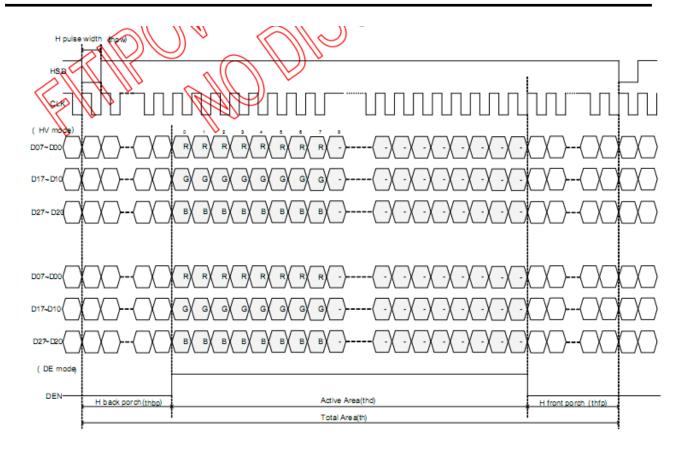
3.1 Operating Conditions


ITEM	Symbol	Min	TYP	Max	Uint	Note
Digital Supply Voltage	VDD	1.71	1.8	1.89	V	
Analog Supply Voltage	AVDD	9.4	9.6	9.8	V	
Gate On Voltage	VGH	17	18.0	19.0	V	
Gate Off Voltage	VGL	-7.0	-6.0	-5.0	V	
Common Electrode Driving Signal	VCOM	3.1	3.3	3.5	V	

Note1: Please adjust VCOM to make the flicker level be minimum.

3.2 Current Consumption


_	Values					
Item	Symbol	Min	Тур	Max	Unit	Condition
	Ідн	-	0.5	-	mA	Vgн=18.0V
Current for Driver	lgL	1	3.5	1	mA	VgL=-6.0V
	IDVdd	-	10.8	-	mA	DVpd =1.8V
	IAVdd	-	21.5	-	mA	AVDD =9.6V


3.3 Power on/off Sequence

Note: CLK and Data Lanes should keep in LP11(stop state) before GRB.

3.4 Timing characteristics

Horizontal input timing

DE mode

Parameter	Cumbal		Unit		
Parameter	Symbol	Min.	Тур.	Max.	Offit
DCLK frequency @Frame rate=60hz	fclk	40.8	51.2	67.2	Mhz
Horizontal display area	thd		1024		DCLK
HSYNC period time	th	1114	1344	1400	DCLK
HSYNC blanking	thb+thfp	90	320 (376	DCLK
Vertical display area	Tvd		600		Н
VSYNC period time	Tv	610	635	W 800	Н
VSYNC blanking	Tvb+Tvfp	10	32	200	Н

HV mode

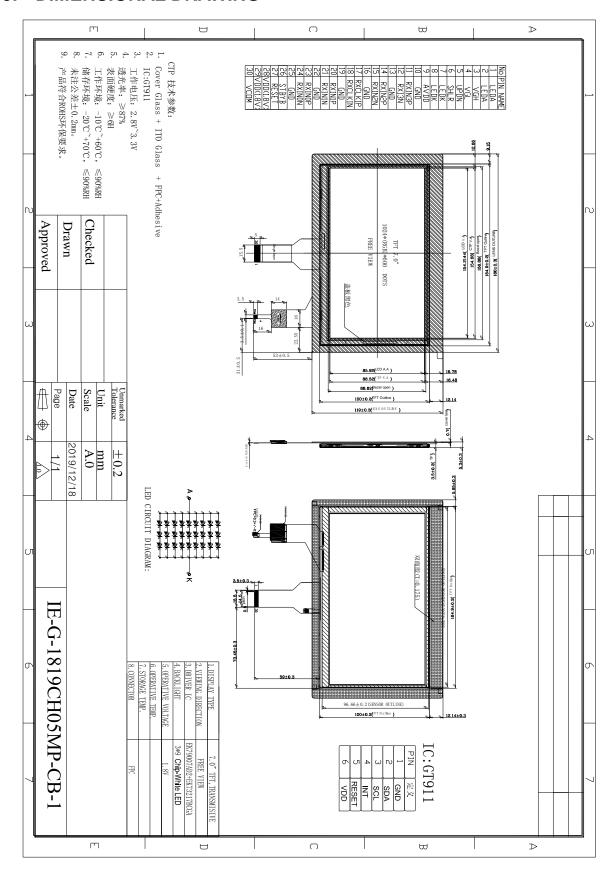
Horizontal input timing

Horizontal Input tilling	11 12	/ \\	- // ^		
Parameter	Symbol		Value		Unit
Horizontal display area	April 1		1024		DCLK
DCLK frequency@ Frame rate≠60 z	fclk	Min.	Yyp.	Max.	
DCER frequency@ Frame rate-90012		() () () () () () () () () ()	51.2	63	Mhz
1 Horizontal Line	S	200	1344	1400	
Min.			1		
HSYNC pulse width	Inpw		70		DCLK
Max			140		DOLK
HSYNC blanking	thb	160	160	160	
HSYNC front porch	thfp	16	160	216	

HV mode

Vertical input timing

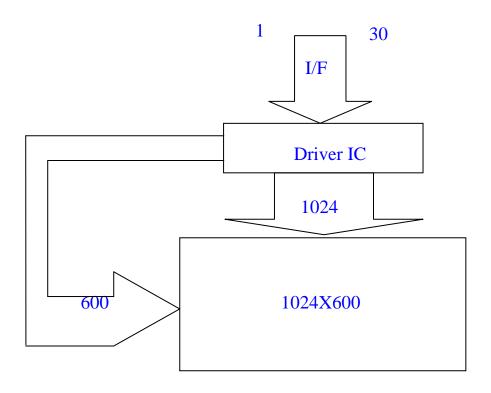
Parameter	Cumbal		Unit		
Parameter	Symbol	Min.	Тур.	Max.	Unit
Vertical display area	tvd		600		Н
VSYNC period time	tv	624	635	750	Н
VSYNC pulse width	tvpw	1	10	20	Н
VSYNC back porch	tvb	23	23	23	Н
VSYNC front porch	tvfp	1	12	127	Н


4. BACKLIGHT CHARACTERISTICS

Item	Symbol	Min	Тур	Max	Unit	Condition
Forward Voltage	Vf		9.6		V	If=180mA
Forward Current	If		180	-	mA	
Operating Life Time			30000		Hrs	

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25°C

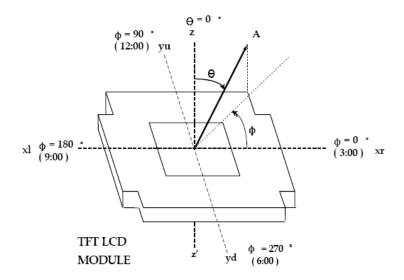
Note 2: Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data..


5. DIMENSIONAL DRAWING

6. INTERFACE PIN CONNECTIONS

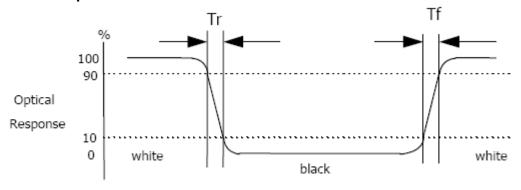
Pin No.	Symbol	I/O	Function
1	LEDA	-	Power for LED backlight (Anode)
2	LEDA	-	Power for LED backlight (Anode)
3	VGH	-	Power for TFT -
4	VGL	-	Negative Power for TFT
5	UPDN	Р	Up / Down Display Control
6	SHLR	I	Left or Right Display Control
7	LEDK	Р	Power for LED backlight (Cathode)
8	LEDK	I	Power for LED backlight (Cathode)
9	AVDD	I	Power for Analog Circuit
10	GND	I	Power ground
11	RXIN3P	I	MIPI-DSI Data differentialsignal input pins. (Data lane 3+)
12	RXIN3N	I	MIPI-DSI Data differentialsignal input pins. (Data lane 3-)
13	GND	1	Power ground
14	RXIN2P	I	MIPI-DSI Data differentialsignal input pins. (Data lane 2+)
15	RXIN2N	I	MIPI-DSI Data differentialsignal input pins. (Data lane 2-)
16	GND	I	Power ground
17	RXCLKIP	1	MIPI-DSI CLOCK differential signal input pins.
18	RXCLKIN	I	MIPI-DSI CLOCK differential signal input pins.
19	GND	I	Power ground
20	RXIN1P	I	MIPI-DSI Data differentialsignal inputpins. (Data lane 1+)
21	RXIN1N	I	MIPI-DSI Data differentialsignal input pins. (Data lane 1-)
22	GND	1	Power ground
23	RXIN0P	I	MIPI-DSI Data differentialsignal input pins. (Data lane 0+)
24	RXIN0N	I	MIPI-DSI Data differentialsignal input.pins. (Data lane 0+)
25	GND	I	Power ground
26	STBYB	I	Standby mode
27	RESET	I	Global reset pin.
28	VDD(1.8V)	I	Power supply(1.8V)
29	VDD(1.8V)	I	Power supply(1.8V)
30	VCOM	I	Common Voltage

7. BLOCK DIAGRAM OF LCM


8. ELECTRO-OPTICAL CHARACTERISTICS

Optical characteristics are determined after the unit has been on and stable for approximately 30 minutes dark environment at 25 $^{\circ}$ C.the value specified are at an approximate distance 500mm from the LCD surface at a viewing angle and θ equal to 0

8.1 LCD Optical Characteristics


Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remar k
	Ф=3 O'clock			-	85	-	deg	
Viewing	Φ=9 O'clock		Cr > 10	-	85	-		Note 4
Angle	Φ= 6 O'clock	θ	01 > 10	-	85	-		Note 1
	Φ=12 O'clock			-	85	-		
Resp	oonse time	Tr+Tf	θ=0	-	30	-	ms	Note 2
Con	trast ratio	Cr	Ф=0	-	800	-	-	Note 3
	RED	Х	θ=0 Φ=0	-	1	-	-	
		Υ		-	1	-		
 ()	GREEN	Х		-	1	-		
CIE(x,y)		Υ		-	-	-		
chromati		Х		-	1	-	-	Note 4
city	BLUE	Υ		-	1	-		
	WHITE	Х		-	1	-		
		Υ		-	1	-		
Uniformity(%)				80	1	-	-	Note 5
Luminance		L		-	400	-	-	Note 6

Note 1. LCD Viewing Angle

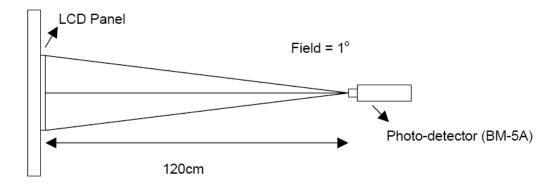
Viewing angle is the angle at which the contrast ratio is greater than 10.the angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface.

Note 2. Response time

Response time is the time required for the display to transition from white to black (Rising time, Tr) and from black to white (Falling time, Tf).for additional information

Note 3. Contrast Ratio(CR)

Contrast Ratio(CR) is defined mathematically as:

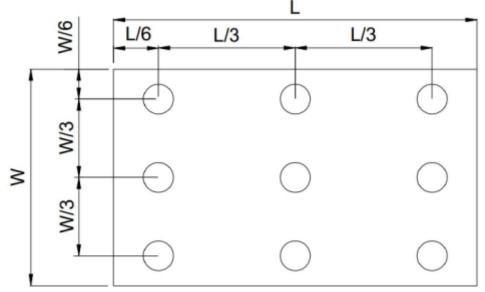

Surface Luminance with all white pixels

Contrast Ratio=

Surface Luminance with all black pixels

Surface luminance is the center point across the lcd surface 500mm from the surface with all pixels displaying white.

Note 4. Definition of optical measurement setup



Note 5. Definition of luminance uniformity

Active area is divided into 9 measuring areas. Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L----- Active area length W----- Active area width

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 6. Definition of luminance:

Measure the luminance of white state at center point.

9.0 TOUCH PANEL SPECIFICATION

9.1 General Specification

Item	Display Panel	Remark
Size	7.0 inch	/
Outline Dimension	180.0 x 119.0 x 1.7	mm
View Area	154.68 x 86.52	mm
Sensor Area	163.4 x 96.66	mm
Touch Panel Structure	G+G	/
Surface Hardness	≧ 6 H	/
Transmittance	≧87%	/
Controller IC	GT911	/
Interface Type	I2C	/
Operating temperature &Humidity	-10℃~+60℃: 45%~90%RH	/
Storage temperature &Humidity	-20℃~+70℃: 45%~90%RH	/

9.2 FPC PIN Assignment

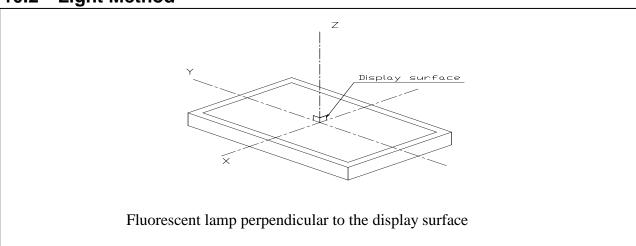
Pin.No	Symbol	Function
1	GND	Ground
2	SDA	IIC_SDA
3	SCL	IIC_SCL
4	INT	IIC_INT
5	RESET	IIC_RESET
6	VDD	Power supply3.3v

10.0 INSPECTION CRITERIA

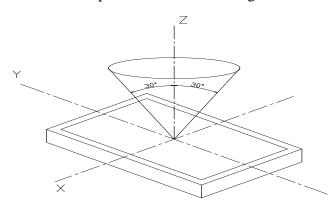
10.1 Inspection Conditions

10.1.1 Environmental conditions

The environmental conditions for inspection shall be as follows


Room temperature: 20±3°C

Humidity: 65 ±20% RH


10.1.2 Environmental conditions

With a single 20-watt fluorescent lamp as the light source, the inspection was in the distance of 30cm or more from the LCD to the inspector's eyes.

10.2 Light Method

Inspection distance and angle

Inspection should be performed within angle ϕ (ϕ is usually 30 °) from Z axis to each X and Y. Inspection distance in any direction within ϕ must be kept 30±5cm from the display surface.

10.3 Classification of defects

10.3.1 Major defect

No.	Item	Inspection Standard	Classification of defects
1	All functional defects	 No display Display abnormally Open or missing segment Short circuit Excess power consumption Backlight no lighting, flickering and abnormal lighting 	Major
2	Missing	Missing component	Major
3	Outline dimension	Overall outline dimension beyond the drawing is not allowed	Major

10.3.2 Cosmetic Defect

No.	Item	Inspection	Classificatio n of defects	
		For dark/white spot, size Φ is defined as Φ=(x+y)/2	→ x y	
1	(spot defect) Black and White spot pinhole	Size Φ (mm) Φ≤0.10 0.10<Φ≤0.20 0.20<Φ≤0.30 0.30<Φ	Acceptable Quantity Ignore 2 2 0	Minor
2	(line defect) Black and White line	Define: Width W ★ Length L		Minor

	Polarizer			
	scratch	Width(mm)	Length(mm);Acceptable	
			Qty	
		Φ≤0.03 L≤1.0	Ignore	
		0.03 <w≤0.05< td=""><td>L≤3.0; N≤2</td><td></td></w≤0.05<>	L≤3.0; N≤2	
		0.05 <w l="" or="">3.0</w>	Define as spot defect	
		Dent or bubble(betw	reen the polarizer and glass)	
		Size Φ(mm)	Acceptable Qty	
3	Polarizer defect	Ф≤0.10	Ignore	Minor
		0.10<Φ≤0.2	2	
		0.20<Φ≤0.30	1	
		0.30<Ф	0	

10.3.3 Cosmetic Defect

No.	ltem	Inspection Standard			Classificatio n of defects
1	Glass defect	X ≤3.0 Remark: S=conta T=the th Chips on the corr allowed to extend perimeter seal. A	Y ≤S act pad length; nickness of glass ner of terminal sl d into the ITO pa	hall not be d or expose	Minor

2) Chip on the ed	ge of glass	* N	Minor
X	Υ	Z	
Ignore	≤0.5	≤T	
Acceptable Qua	ntity: N≤2		
3) Creak			
Creaks tend to break are not allowed.			Minor

11.0 LIABILITY AND INSPECTION STANDARD

NO.	Test Item	Test condition	Criterion	
1	High Temperature Storage	70°C±2°C 96H Restore 2H at 25°C Power off		
2	Low Temperature Storage	-20℃±2℃ 96H Restore 2H at 25℃ Power off		
3	High Temperature Operation	60°C±2°C 96H Restore 2H at 25°C Power on		
4	Low Temperature Operation	-10℃±2℃ 96H Restore 2H at 25℃ Power on	After testing, cosmetic and electrical defects should not happen.	
5	High Temperature & Humidity Storage	60°C±2°C 90%RH 96H Power off		
6	Temperature Cycle	20°C ← → 25°C ← → 70°C 30min 5min 30min after 10cycle, Restore 2H at 25°C Power off		
7	Vibration Test	10Hz~150Hz, 100m/s2, 120min		
8	Shock Test	Half-sinewave,300m/s2,11ms		
9	Drop Test(package state)	600mm, concrete floor,1corner, 3edges, 6 sides each time	1.After testing, cosmetic and electrical defects should not happen. 2.The product should remain at initial place. 3.Product uncovered or package broken is not permitted.	

12.0 PRECAUTIONS FOR USING LCD MODULE

12.1 Handing Precautions

- (1) The display panel is made of glass and polarizer. As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make

sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.

- (9) Do not attempt to disassemble or process the LCD module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
 - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - Do not damage or modify the pattern writing on the printed circuit board.
 - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
 - Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - Do not drop, bend or twist LCM.

12.2 Storage Precautions

When storing the LCD modules, the following precaution is necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

12.3 Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.